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bstract

Experiments with a laminar flow-based membrane-less fuel cell (LFMFC) have been conducted by many scientists. Choban et al. reported that
he cell’s performance is cathode limited. Accordingly, we have established half-cell models in our paper to study two types of redox reactions
ccurring at the cathode of the LFMFC without considering the fuel reaction. Our two-dimensional models are solved by using the spectral
ethod where the eigenvalues are obtained by employing the Galerkin method. The similarity transform is applied to separate the concentrations

f the oxidant and the intermediate product from their coupled boundary conditions. As shown in our results, the limiting average current density
ncreases with the stoichiometry coefficient of electrons in the case of no intermediate product, yet the maximum electric power is independent

f this coefficient. Given the concentrations of the oxidant and the intermediate product at the inlet end of the cell, we have obtained a condition
ncreasing the current density. However, we also found the principle of generating a great deal of electric power by increasing the concentration of
he intermediate product at the inlet end of the cell.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The possibility of generating electrical energy by continu-
lly feeding electrochemically active materials to a suitable cell
as been investigated since 1839 by using platinum electrodes
mmersed in aqueous acid electrolytes. However, important
rogress in fuel cell technology dates from the early 1950s due
o the requirements of the US Space program which has stimu-
ated many researchers to seek electrical power that is clean, safe,
fficient, economically feasible, and capable of quick start-up.

Many researchers have developed various fuel cells [1] for
olving the two conventional problems in fuel cells: (1) slow
lectrochemical reaction rates result in low efficiency and (2)
ydrogen has not become a readily available fuel source. On the
asis of the electrolyte employed in the cell, there are five main

ypes of fuel cells: proton exchange membrane (PEM), alkaline,
hosphoric acid, molten carbonate, and solid oxide fuel cell. In
proton exchange membrane fuel cell (PEMFC), for preventing

∗ Corresponding author. Tel.: +886 2 33665693; fax: +886 2 23639290.
E-mail address: wenyau2004@yahoo.com (W. Chen).
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he mixing of fuels and oxidants, two electrode plates are bound
o either side of the PEM that is used for transferring the protons
rom the anode to the cathode. Excellent reviews of the PEMFC
p to mid 1990s were presented by Prater [2] and Gottesfeld
3]. The computational works on the PEMFC can be referred to
he studies of Bernardi and Verbrugge [4,5], Springer et al. [6,7],
uller and Newman [8], Nguyen and White [9], Gurau et al. [10],
i and Nguyen [11,12], Um et al. [13], and Kulikovsky [14].

However, the PEM has two disadvantages: (1) it must be
ontinuously hydrated to provide good transport of protons and
2) the fuel can diffuse through the PEM to the cathode, caus-
ng the problem of a mixed potential. To avoid these issues,
errigno et al. [15] and Choban et al. [16], respectively, devel-
ped the laminar flow-based membrane-less fuel cell (LFMFC)
n which the fuel and oxidant aqueous solutions are pressure-
riven from separate sources into a common channel. In this
hannel, these two streams remain laminar parallel flows with a
iquid–liquid interface. As a result, the first disadvantage of using

he PEMFC is naturally eliminated for the LFMFC because the
iquid–liquid interface is essentially a non-drying membrane.

oreover, the problem of mixed potential can be effectively pre-
ented because the LFMFC is normally operated at the Peclet

mailto:wenyau2004@yahoo.com
dx.doi.org/10.1016/j.jpowsour.2006.07.049
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Nomenclature

CInt non-dimensional concentration of the intermedi-
ate product

COx non-dimensional oxidant concentration
C̄Ox and C̄Int the inlet-end concentrations of the oxidant

and the intermediate product in the case of Eqs.
(47a) and (47b)

C1 inlet-end concentration of the oxidant in the case
of Eq. (17)

CBL concentration boundary layer
iav average current density generated at the cathode

electrode by the reaction of Eq. (17)
iav-1 and iav-2 average current densities generated at the

cathode electrode by the reactions of Eqs. (47a)
and (47b), respectively

iav-net and Pnet net average current density and net average
electric power generated at the cathode electrode
through the simultaneous reactions of Eqs. (47a)
and (47b)

kInt and k′Int the reaction rate constants for the intermediate
product in the anodic process of Eq. (47a) and the
cathodic one of Eq. (47b), respectively.

kOx and kRd the reaction rate constants for the oxidant
(Ox) and the final product (Rd)

LFMFC laminar flow-based membraneless fuel cells
n the stoichiometry constant for the electron
P average electric power generated at the cathode

electrode by the reaction of Eq. (17), defined as η
time iav

Pe Peclet number
PEM proton exchange membrane
PEMFC proton exchange membrane fuel cells

Greek letters
η difference between the non-dimensional electric

potentials of the cathode electrode surface and the
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adjacent electrolyte solution
ηeq the potential η at the equilibrium state

umber above 10,000 [16] for optimal performance and for
educing the crossover diffusions of fuel and oxidant. Recently,
he principle of laminar parallel flows has been successfully
pplied to other microfluidic systems [17–20]. To date, a surge
f studies has been reported on micro power sources for the
ncreasing demands of small and often portable devices capa-
le of operating in longer periods without recharging; e.g., cell
hones, laptop computers.

Ismagilov et al. [21] investigated the crossover diffusion of
lectrolytes in parallel flows. They found the scaling laws for
he crossover diffusion: the thickness of the crossover diffusion
one is scaled as the one-third power of (DZ/U) near the bound-

ry and as the one-half power in the middle of the channel,
here D is the diffusivity, Z the distance along the channel, and
is the averaged velocity. Put succinctly, the thickness of the

rossover diffusion is determined only by the Peclet number. In

i
b
t
t
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ummary, these scaling laws provide a basic understanding of
he crossover diffusion, which is required to predict the reso-
utions of patterning and the fabrication with laminar flow [22]
nd is also necessary for the designs of diffusive T sensors [23]
nd other components in micro analytical systems [24].

Anisin et al. studied two-dimensional models for the laminar
ingle gas layer confined between a rigid plate and an electrode
25]. The electric current, as shown in their results, increases
ith the gas velocity.
Bazylak et al. [26] used a three-dimensional fully numerical

odel to calculate the convective mass transport in the LFMFC.
mploying the reaction kinetics, Bazylak et al. derived the
oundary conditions for the fuel and the oxidant. Their results
how that the fuel utilization can be increased from 8% to
3% but only 3% of mixing observed at the outlet is increased
f the inlet-end velocity is decreased from 0.1 to 0.02 m s−1.
owever, based on the simulation results, their proposed

apered-electrode design for the LFMFC enables the fuel
tilization to reach more than 50%.

The Butler–Volmer equation [27] has been applied to calcu-
ate the current density generated by a single reaction. However,
here are possibilities for two reactions to occur simultaneously
nd these reactions are linked by a common reactant. For exam-
le, the single reaction O2 + 4H+ + 4e− � 2H2O occurring at
he cathode electrode can be regarded as the sum of two simul-
aneous reactions [28]:

2 + 2H+ + 2e− � H2O2 (I)

nd

2O2 + 2H+ + 2e− � 2H2O (II)

As seen, reactions (I) and (II) are not independent but linked
y the intermediate product, hydrogen peroxide. Experiments
how that the hydrogen peroxide is a relatively stable and
etectable intermediate product because reaction (I) is gener-
lly inherently faster than (II). However, the more hydrogen
eroxide arising, the less electric current generated by reaction
I), because increasing the chemical potential of the hydrogen
eroxide can activate the anodic process of reaction (I). On
he contrary, because some of the hydrogen peroxide that
ccumulates at the cathode electrode will diffuse away, as a
esult, the hydrogen peroxide in reaction (II) is reduced and
ence less electric current is generated by this reaction. If such
inked simultaneous reactions occur at the cathode electrode,
he net current density generated at the cathode will be treated
s the sum of those currents generated, respectively, from the
imultaneous reactions [28–30].

In this paper we use theoretical approaches to studying the
ingle and linked simultaneous reactions occurring at the cath-
de electrode of the LFMFC. The reason why we focus only
n the cathode-side reactions is based on a report [16] which
entioned that the entire current density cannot increase signif-
cantly with the fuel concentration but can be limited obviously
y the low oxidant concentration. The experiments [16] showed
hat the cell’s performance was cathode limited. Accordingly, in
his paper we are interested in developing two-dimensional half-
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ell models for studying the cases of single reaction and linked
imultaneous reactions occurring at the cathode. We begin with
he governing equations for the steady incompressible parallel
ows. We solve the mass transport equations by means of the
pectral method where the eigenvalues are numerically obtained
y using the Galerkin method [31].

. Mathematical models

.1. Continuous and momentum equations

Fig. 1 is a two-dimensional schematic of the LFMFC, where
he oxidant and fuel solutions are pressure-driven into a common
hannel and remain in laminar parallel flows with a liquid–liquid
nterface. The catalyst electrodes are installed at two bound-
ry walls y* = −H* and H*. The oxidant and fuel solutions are
ainly transported, respectively, in the cathode side (between

* = −H* and 0) and in the anode side (between y* = 0 and

*). These two streams are assumed to be fully developed

teady incompressible high-Peclet-number parallel flows. The
rossover diffusion will be considered in the mass transport
quation. We assume constant fluidic properties and neglect the

0

0

ig. 1. Two-dimensional schematic of the LFMFC in which the oxidant and fuel st
ows with a liquid–liquid interface.
ources 162 (2006) 1137–1146 1139

lectrostatic force in the momentum equation by means of the
lectroneutrality assumption (see Chapter 11 of Ref. [28]).

Using the characteristic velocity, length, and pressure:

∗
i =

(
ν∗

H∗

)
ui, (1)

x∗, y∗) = H∗(x, y), (2)

∗
i = ρ∗

i

(
ν∗

H∗

)2

Pi, (3)

n which ν* is a characteristic kinematic viscosity, we can obtain
he non-dimensional continuity and momentum equations for
he parallel flows in the common channel:

∂ui

∂x
= 0 (4)

∂Pi ∂2ui
= −
∂x

+ νi
∂y2 (5)

= −∂Pi
∂y

(6)

reams are pressure-driven into a common channel and then remain in parallel
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here νi is defined as ν∗i /ν∗. The subscript of i = 1 represents
he cathode-side stream that is transported between y = −1 and
. The anode-side stream is represented by i = 2 and transported
etween y = 0 and 1. The solution to the velocity ui is a parabolic
rofile:

i = −Ūi[y2 + Aiy + Bi] (7)

¯
i = −∂Pi/∂x

2νi
(8)

We use four boundary conditions to solve the undetermined
oefficients in Eq. (7) for i = 1 and 2: they are, respectively, con-
inuous velocity and shear stress at y = 0 plus no-slip conditions
t y = ±1. Moreover, the x-direction pressure gradients in the
athode- and anode-side streams must be equal according to Eq.
6) and the dynamic boundary condition. As a result, we obtain:

∂P1

∂x
= ∂P2

∂x
≡ δp (9)

¯
i ≡ − δp

2νi
(10)

1 = M(1 − ru)

M + ru
(11)

2 = 1 − ru

M + ru
(12)

1 = − ru(1 +M)

M + ru
(13)

2 = − 1 +M

M + ru
(14)

= ρ∗
2

ρ∗
1

(15)

u = ν∗1
ν∗2
. (16)

.2. Mass transport models

In this subsection, we introduce the half-cell models and theo-
etical approaches to studying the single and linked simultaneous
eactions occurring at the cathode electrode. As described above,
he fuel reaction is not considered because the cell’s perfor-

ance is cathode limited [16]. The stoichiometry coefficients
f the oxidant, intermediate product, and the final product are
ssumed to be one. We assume high-Peclet-number flows for
he reason described in the Introduction. In particular, in the
igh-Peclet-number flow, the y-direction gradient of the oxidant
oncentration near the cathode electrode becomes steeper, so a
arger amount of the oxidant can diffuse to the electrode.
.2.1. Part (A)
x + 2mH+ + 2ne− � Rd (17)

q. (17) is a single redox reaction where the notations Ox and
d represent, respectively, the oxidant and the final product. A

l

P

Sources 162 (2006) 1137–1146

roton source, such as sulfuric acid, can be added to the cathode-
ide stream to provide a supply of protons for the consumption
f protons at the cathode electrode [16,32,33]. In fact, the con-
entration of the sulfuric acid is very large as compared to that
f the oxidant; the ratio between the concentrations of the sul-
uric acid and the oxygen is 1000 as shown in the paper [16].
herefore, in such a very acidic solution, the concentration of
rotons can be treated as a constant [28]. In this paper the final
roduct is assumed to be pure liquid or solid, of which the activ-
ty is one. Electromigration is not considered for it could be
mall as compared to the convective transport in the high-Peclet-
umber flow. Furthermore, due to the crossover diffusion, the
variable of the oxidant concentration must range from −1

o 1, so the oxidant will be transported by a different velocity
rofile as it diffuses across the liquid–liquid interface (see Eq.
7)). Accordingly, we can write down the non-dimensional mass
ransport equation and the boundary conditions for the oxidant as
ollows:

e ũi
∂COx

∂x
= ∂2COx

∂y2 (18)

∂COx

∂y
= kOxCOx e−2βnη − kRd e2β′nη, y = −1 (19)

∂COx

∂y
= 0, y = 1 (20)

here

˜ i ≡ − 1

2νi
(y2 + Aiy + Bi) (21)

e ≡ −ν∗δP
D∗

Ox
(22)

he superscript of star (*) stands for dimensional terms and COx
s the non-dimensional oxidant concentration based on the char-
cteristic concentration (one molarity). The notation Pe is the
o-called Peclet number. We quantitatively describe the reaction
f Eq. (17) by using the form of the Butler–Volmer equation as
hown in Eq. (19) where kOx and kRd are, respectively, the non-
imensional reaction rate constants for the oxidant and the final
roduct. Although the inequality of β +β′ �= 1, strictly speaking,
olds for the processes involving more than one electron [34],
e will assume that both β and β′ are equal to 0.5 in this paper.

n Eq. (19) η is a non-dimensional term defined by

≡ Fη∗

RT
(23)

here F is the Faraday number and η* is the difference between
he physical electric potentials of the cathode electrode surface
nd the adjacent electrolyte solution.D∗

Ox is the dimensional dif-
usivity for the oxidant. Note that the activity of the final product,
d, is one. To solve for COx, we transform Eqs. (18)–(20) as fol-
ows:

e ũi
∂C̃Ox

∂x
= ∂2C̃Ox

∂ỹ2 (24)
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∂C̃Ox

∂ỹ
= εC̃Ox, ỹ = −2 (25)

∂C̃Ox

∂ỹ
= 0, ỹ = 0 (26)

here

≡ kOx e−2βnη (27)

˜ Ox ≡ COx −K−1 e2nη (28)

−1 ≡ kRd

kOx
(29)

˜ ≡ y − 1 (30)

Let

˜ Ox =
N∑
k=1

αk exp
{

− σk
Pe
x
}
ψk(ỹ) (31)

Substituting Eq. (31) into Eqs. (24)–(26), we obtain

d2ψk

dỹ2 + σkũiψk = 0 (32)

dψk
dỹ

= εψk, at ỹ = −2 (33)

dψk
dỹ

= 0, at ỹ = 0 (34)

We express ψk by

k =
N∑
n=1

an,kφn(ỹ) (35)

To match the boundary conditions Eqs. (33) and (34), we may
elect

n(ỹ) = cos

(
β̂nỹ

2

)
. (36)

So β̂n must satisfy

ˆ
n tan β̂n = 2ε (37)

The eigenvalues β̂n can be solved numerically. By substi-
uting Eq. (35) into Eq. (32), an eigenvalue equation based on
he Galerkin method is obtained as follows, from which we can
olve for an,k and σk:

H]−1[R]�ak = σk�ak (38)

here

k = [a1,k, a2,k, . . . , aN,k]
T (39)

H]i,j =
∫ 0

ũiφiφj dỹ (40)

−2

R]i,j =
(
β̂n

2

)2

δi,j, i, j = 1, . . . , N. (41)

P

ources 162 (2006) 1137–1146 1141

Carrying out the computation of Eq. (38), we obtain one set of
a1,k, a2,k, . . ., aN,k} for each σk to compose the corresponding
k according to Eq. (35).
Let COx at the inlet end of the common channel (x = 0) be

iven by

Ox =
{

0 for − 1 < ỹ < 0

C1 for − 2 < ỹ < 1
(42)

here C1 is the inlet-end concentration of the oxidant, so the
nlet-end condition for C̃Ox can be found from Eq. (28):

˜ Ox =
{

−K−1 e2nη for − 1 < ỹ < 0

C1 −K−1 e2nη for − 2 < ỹ < 1
(43)

By means of the orthogonality, the coefficients αk in Eq. (31)
an be solved by

k =
∫ 0
−2 C̃Ox(x = 0)ũiψk dỹ∫ 0

−2 ũiψ
2
k dỹ

(44)

After that, C̃Ox can be obtained from Eq. (31), and hence
Ox is solved. Now, the local current density generated at the
athode electrode can be calculated by substituting the COx into
q. (19). Let the current density be rendered non-dimensional by
sing the characteristic current density (FD∗

Ox1 molarity)/H∗.
e define an average current density as

av ≡ 1

L

∫ L

0
2n(kOxCOx e−2βnη − kRd e2βnη)|ỹ=−2 dx (45)

here L is the non-dimensional length of the cathode electrode.
ccording to Eq. (19), we have

av = 2n

L

∫ L

0

∂COx

∂ỹ
|ỹ=−2 dx. (46)

.2.2. Part (B)
x + mH+ + ne− � Int, (47a)

nt + mH+ + ne− � Rd (47b)

Now, we consider two simultaneous reactions linked by an
ntermediate product (Int) as shown in Eqs. (47a) and (47b),
nd their sum is exactly the single reaction of Eq. (17), for
nstance, the case of O2 + 4H+ + 4e− � 2H2O. In this paper
e assume the ratio between the diffusivities of the oxidant and

he intermediate product is roughly equal to one, because the dif-
usivity for most electrolytes in dilute solutions is in the order of
0−9 m2 s−1 [35]. In the following, we present the mass transport
quations and the boundary conditions for the concentrations of
he oxidant and the intermediate product (COx and CInt) on a
asis of the same characteristic scales and assumptions as those
sed in part (A):

∂
[
COx

]
∂2
[
COx

]

e ũi

∂x CInt
=
∂ỹ2 CInt

(48)

∂COx

∂ỹ
= kOxCOx e−βanη − kIntCInt eβ

′
anη, ỹ = −2 (49a)
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∂CInt

∂ỹ
= kOxCOx e−βanη − kIntCInt eβ

′
anη − k′IntCInt e−βbnη

+ kRd eβ
′
bnη, ỹ = −2 (49b)

∂

∂ỹ

[
COx

CInt

]
= 0, ỹ = 0 (50)

here Pe and ũi are defined in Eqs. (21) and (22).We can com-
ine Eqs. (49a) and (49b) into:

∂

∂ỹ

[
COx

CInt

]
=
[
kOx e−βanη −kInt eβ

′
anη

−kOx e−βanη kInt eβ
′
anη+k′Int e−βbnη

][
COx

CInt

]

+
[

0

−kRd eβ
′
bnη

]
(51)

Note that each electron transfer coefficient in Eq. (51), just as
ike as β and β′ in Eq. (19), is assumed to be 0.5. The notations
Int and k′Int represent the reaction rate constants of the inter-
ediate product in the anodic process of Eq. (47a) and in the

athodic process of Eq. (47b), respectively. However, we can
ewrite Eq. (51) as follows:

∂

∂ỹ

[
COx

CInt

]
= ε̃

[
1 −κ̃1 enη

−1 κ̃1 enη + κ̃2

][
COx

CInt

]

+
[

0

−kRd eβnη

]
(52)

here

˜ ≡ kOx e−βnη (53)

˜1 ≡ kInt

kOx
(54)

˜2 ≡ k′Int

kOx
(55)

≡ 0.5 (56)

Define the matrix in Eq. (52) as [A]:

A] ≡
[
A11 A12

A21 A22

]
≡
[

1 −κ̃1 enη

−1 κ̃1 enη + κ̃2

]
(57)

Using the similarity transform, we have

A] = [P][Λ][P]−1 (58)

nd [
λ1 0

]

Λ] ≡

0 λ2
(59)

here λ1 and λ2 are the distinct eigenvalues of [A]. The first and
econd columns in the [P] matrix are, respectively, the eigen-

s
a

i

Sources 162 (2006) 1137–1146

ectors corresponding to λ1 and λ2; that is,

A11 A12

A21 A22

][
P1,m

P2,m

]
= λm

[
P1,m

P2,m

]
, m = 1, 2 (60)

If we define

S1

S2

]
≡ [P]−1

[
COx

CInt

]
(61)

f1

f2

]
≡ [P]−1

[
0

−kRd eβnη

]
(62)

nd

t1

t2

]
≡
[
S1

S2

]
+
[
f1/(ε̃λ1)

f2/(ε̃λ2)

]
(63)

hen we can rewrite Eqs. (48), (50) and (52), respectively, as
ollows:

e ũi
∂

∂x

[
t1

t2

]
= ∂2

∂ỹ2

[
t1

t2

]
(64)

∂

∂ỹ

[
t1

t2

]
= 0, ỹ = 0 (65)

∂

∂ỹ

[
t1

t2

]
=
[
ε̃λ1t1

ε̃λ2t2

]
≡
[
ε̃1t1

ε̃2t2

]
, ỹ = −2 (66)

As seen, both t1 and t2 are not coupled as COx and CInt in Eq.
52). The conditions of t1 and t2 at the inlet end of the common
hannel (x = 0) can be found through Eqs. (61)–(63) where the
nlet-end conditions of COx and CInt are given as follows:

Ox|x=0 =
{

0 for − 1 < ỹ < 0

C̄Ox for − 2 < ỹ < 1
(67)

Int|x=0 =
{

0 for − 1 < ỹ < 0

C̄Int for − 2 < ỹ < 1
(68)

Therefore, we can separately solve Eqs. (64)–(66) for t1 and
2 by means of the same method for solving Eqs. (24)–(26),
nd hence COx and CInt can be obtained through the reverse
ransform from Eq. (61)–(63). Now, we can calculate the net
verage current density which is the sum of two average current
ensities generated, respectively, by the simultaneous reactions
f Eqs. (47a) and (47b). They are expressed as

av-1 ≡ 1

L

∫ L

0
n(kOxCOx e−βnη − kIntCInt eβnη)|ỹ=−2 dx (69)

av-2 ≡ 1

L

∫ L

0
n(k′IntCInt e−βnη − kRd eβnη)|ỹ=−2 dx (70)

here i and i are non-dimensional quantities based on the
av-1 av-2
ame characteristic current density used in part (A). Thus the net
verage current density is defined by

av-net = iav-1 + iav-2. (71)
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. Results and discussion

In this section we present the modeling results of both current
ensity and electric power as a function of potential η for the
eactions in parts (A) and (B). As defined in Eq. (23), η is the
ifference between the non-dimensional electric potentials of the
athode electrode surface and the adjacent electrolyte solution.
or saving on computation, the potential η is restricted to the
ange from 0 to less than 30. Consequently, the conversion by
sing Eq. (23) shows that the range of the physical potential η*

s within 0–0.775 V for room temperature (RT/F = 0.02585 V).
nless otherwise specified, the following parameters are fixed:

1) the number of expansion terms in Eq. (31) N = 150, similarly
or t1 and t2 expansions, (2) the Peclet number, Pe = 106, (3) M
nd ru in Eqs. (15) and (16) are set to be one and (4) all electron
ransfer coefficients in Eqs. (19), (49a) and (49b) are specified
s 0.5.

.1. Results for part (A)

Fig. 2a shows the average current density iav versus the poten-
ial η for the reaction of Eq. (17) for four cases of kRd, in which
e specify three parameters: the ratio kOx to kRd (K), stoichiom-

try coefficient n, and the inlet-end concentration of the oxidant
C1). As mentioned above, we set the range of η as from 0 to 20

η* = 0–0.517 V). As a result, considering the clarity of Fig. 2a,
e present only four cases of kRd within this potential range.
hose curves for kRd larger than 10−8 and less than 10−19 are so
lose to the curves of kRd = 10−8 and 10−19 that they are not dis-

ig. 2. Average current density iav and average electric power P vs. the potential
where K = e40 × 103, n = 1, and C1 = 10−3. The symbol of rectangular box

tands for the case of kRd = 10−8; black circle: kRd = 10−12; triangle: kRd = 10−16;
tar: kRd = 10−19.
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layed in the figure; accordingly, we choose 10−8 and 10−19 as
he range of kRd in Fig. 2a for pure graphic consideration. In the
quilibrium, the current densities generated by the cathodic and
he anodic processes of Eq. (17) are equal such that the deriva-
ive of COx respective to y at the cathode electrode is equal to

according to Eq. (19), whereby we can infer COx|y = −1 = C1.
ccordingly, we can obtain from Eq. (19) the potential η at the

quilibrium state:

eq = ln(kOxC1/kRd)

2n
= ln(C1K)

2
= 20 (72)

hich is independent of kRd as shown in Fig. 2a. Furthermore, we
ombine Eqs. (30), (45) and (72) to rewrite the average current
ensity as

av = 1

L

∫ L

0
2nkRd e2nβηeq

×
(
COx,y=−1

C1
e−2βn(η−ηeq) − e2βn(η−ηeq)

)
dx (73)

Apparently, the potential η must be decreased much further
rom the equilibrium-state value in order to generate appreciable
urrent density in the case of smaller kRd, because we know that
he smaller the kRd and kOx, the less the exchange current density.
or instance, to generate the average current density of 0.4, the
eduction of η is found to be 1% and 97% of ηeq for the cases of
Rd = 10−8 and 10−19, respectively. Now, we define an average
lectric power by P = ηiav. Fig. 2b shows that the maximum P
ecreases as kRd is diminished.

In contrast to Fig. 2 where kRd is varied yet n is fixed, Fig. 3a
hows the effects of n on the cell’s performance, where kRd is
xed, while C1 and K remain the same as in Fig. 2. As seen,

he equilibrium-state value of the potential η decreases with
ncreasing n: ηeq = 20, 10, and 6.67 for n = 1, 2, and 3, respec-
ively. However, this property can be checked by substituting
hese n values into Eq. (72). On the contrary, the limiting aver-
ge current density increases with n. In fact, as the potential η
s lowered to a certain extent, the cathodic process of Eq. (17)
verwhelms the anodic one such that the oxidant at the cath-
de electrode surface (y = −1) is nearly depleted. Consequently
he y-direction gradient of the oxidant concentration at y = −1
eaches the limit, which can be estimated as follows:

∂COx
∂y

|y=−1 ∼= COx,bulk region−COx,y=−1
dc

∼= COx,bulk region
dc

= C1
dc

(74)

here dc is the so-called thickness of the concentration boundary
ayer (CBL) of the oxidant. This thickness is proportional to the
everse of the square root of the Peclet number according to Eq.
18), yet independent of n. In the situation of Eq. (74), the y-
irection diffusion of the oxidant reaches the maximum so the
verage current density will reach its limit as well. We combine
qs. (30), (46) and (74) to express this limiting average current
ensity as
av = 2n

L

∫ L

0

∂COx

∂y
|y=−1 dx ∼= 2nC1

L

L∫
0

dx

dc
(75)
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Fig. 4. Average current densities iav-1 and iav-2 vs. the potential η for n = 1,
kOx = 102, kRd = 10−5, C̄Ox = 0.1, and C̄Int = 0. The symbol of black circle
stands for the case of kInt = 10−8 and k′

Int = 108; black triangle; kInt = 108 and
k′

Int = 108; rectangular box: kInt = 10−8 and k′
Int = 10−8.
ig. 3. Average current density iav and average electric power P vs. the potential
where K = e40 × 103, kRd = 10−12, and C1 = 10−3. The symbol of black circle

tands for the case of n = 1; rectangular box: n = 2; black triangle: n = 3.

One can see that this limiting value is theoretically linear
ith n because dc is independent of n. As shown in Fig. 3a,

he limiting iav is found to be 1.18, 2.37, and 3.55 for n = 1, 2,
nd 3, respectively. Obviously their ratio is nearly 1:2:3, which
oincides with Eq. (75). Next, we display in Fig. 3b the results
f the average electric power P calculated for those three cases
f n in Fig. 3a. However, the maximum P is about the same,
early independent of n. Moreover, the potential η at which the
aximum P is generated is found to be 13.4, 6.8, and 4.5 for
= 1, 2, and 3, respectively. The ratio among these potentials is
bout 1:1/2:1/3.

.2. Results for part (B)

When studying the simultaneous reactions of Eqs. (47a) and
47b), we are especially interested in the effects of the interme-
iate product on the cell’s performance. Consequently, in this
ubsection our discussion is focused on the theoretical under-
tanding of the principles: how the current density is changed
ith the reaction rate constants of the intermediate product (kInt

nd k′Int) and changed with the concentration of the intermediate
roduct. In order to qualitatively describe the effects of kInt and
′
Int, in Figs. 4 and 5, we investigate three sets of kInt and k′Int in
hich we specify the kOx and kRd, and the inlet-end concentra-

ions of the oxidant and the intermediate product (C̄Ox and C̄Int).

ext, in Figs. 6 and 7, we choose three cases of C̄Int to study

he effects of the concentration of the intermediate product on
he cell’s performance. It should be noticed that the ranges of
Int and k′Int (both are from 10−8 to 108) are specified for pure

Fig. 5. Net average current density iav-net and net average electric power Pnet vs.
the potential η for n = 1, kOx = 102, kRd = 10−5, C̄Ox = 0.1, and C̄Int = 0. The
symbol of black circle stands for the case of kInt = 10−8 and k′

Int = 108; black
triangle: kInt = 108 and k′

Int = 108; rectangular box: kInt = 10−8 and k′
Int = 10−8.
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Fig. 6. Average current densities iav-1 and iav-2 vs. the potential η for n = 1,
kOx = 102, kRd = 10−5, kInt = 10−8, k′

Int = 108, and C̄Ox = 0.1. The symbol of
rectangular box stands for the case of C̄Int = 0; star: C̄Int = 0.01; black circle:
C̄Int = 0.05.

Fig. 7. Net average current density iav-net and net average electric power Pnet vs.
the potential η where n = 1, kOx = 102, kRd = 10−5, kInt = 10−8, k′

Int = 108, and
C̄Ox = 0.1. The symbol of rectangular box stands for the case of C̄Ox = 0; star:
C̄Int = 0.01; black circle: C̄Int = 0.05. The symbol of black triangle represents
the iav and P calculated for the single reaction of Eq. (17).

computational consideration, not for any particular intermediate
species, because the main purpose in this subsection is to qual-
itatively describe the effect of the intermediate product on the
cell’s performance.

First, we display in Fig. 4a the results of calculated iav-1 by
using Eq. (69) for kInt = 10−8 and 108, whereas k′Int is fixed at 108.
It indicates that iav-1 becomes larger in the case of smaller kInt.
In contrast to Fig. 4a, Fig. 4b shows the iav-2 calculated by using
Eq. (70) for k′Int = 10−8 and 108, where kInt is fixed at 10−8.
As seen, the iav-2 increases obviously with k′Int. Yet, it must be
noticed that iav-2 is almost 0 or negative in the case of k′Int = 10−8

because this k′Int is a great deal smaller than the specified value
of kRd and also because the C̄Int is 0 such that the reaction of
Eq. (47b) is dominated by the anodic process especially when
the potential η is enhanced. Accordingly, we infer, it is favorable
to increasing the net average current density iav-net when both
kOx/kInt and k′Int/kRd are very large. To prove this, we present
the calculated iav-net versus the potential η in Fig. 5a for those
cases in Fig. 4. As shown, the results agree with our inference.
On the contrary, the case of larger kInt coupled with smaller k′Int
will be more adverse to the generation of current density, which
is not our interest and not presented in Fig. 5. In addition, we
display in Fig. 5b the net average electric power Pnet defined
by iav-netη. In summary, at given C̄Ox and C̄Int, simultaneously
increasing the ratios kOx/kInt and k′Int/kRd will be favorable to the
enhancements of the net average current density and the electric
power.

To more understand the effect of the intermediate product on
the cell’s performance, in addition to researching the effects of
kInt and k′Int, we also want to study the effect of the concentration
of the intermediate product. To carry out this work, we select the
optimal case in Fig. 5 where kInt = 10−8 and k′Int = 108 because,
as described in the last paragraph, this case is favorable to the
generations of current density and electric power. Furthermore,
we set C̄Int = 0, 0.01, and 0.05, respectively. First, as shown in
Fig. 6a, the calculated iav-1 by using Eq. (69) is about the same
among these three cases of C̄Int because the given ratio kOx/kInt
is so large that the second term in the integration of Eq. (69),
as compared to the first term, is almost neglected for C̄Int less
than 0.05. Moreover, as displayed in Fig. 6b, the iav-2 increases
remarkably because the specified value of k′Int/kRd is so large
that slightly increasing the C̄Int can obviously enlarge the first
term in the integration of Eq. (70). Accordingly, we infer, only
when the ratios kOx/kInt and k′Int/kRd are simultaneously very
large will the net average current density obviously increase as
C̄Int is increased. To prove this, as defined in Fig. 5, the net
average current density and the net average electric power for
those cases in Fig. 6 are calculated and exhibited in Fig. 7a and
b, respectively. As seen, both iav-net and Pnet obviously increase
with C̄Int. In particular, the maximum Pnet changes from 156 to
653 as C̄Int is slightly increased from 0 to 0.05. Checking Fig. 6,
one can see that the evident increases in iav-net and Pnet are due
to the changes in iav-2. Finally, we present in Fig. 7a and b the iav
and P (black-triangle symbol) calculated for the single reaction
of Eq. (17) to compare with the iav-net and Pnet at the same values
of n, kOx, kRd, and the inlet-end concentration of the oxidant. As
shown from the result of comparison, adding more intermediate
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roduct into the linked simultaneous reactions of Eqs. (47a) and
47b) can help us obtain higher power than that obtained though
he single reaction of Eq. (17) as long as the ratios kOx/kInt and
′
Int/kRd are very large.

. Conclusions

Two-dimensional half-cell models were established for
tudying the current densities and electric power generated
hrough the reactions of Eqs. (17), (47a) and (47b) that occur at
he cathode of the LFMFC. The parabolic solutions to the fully
eveloped steady incompressible high-Peclet-number parallel
ows were obtained without considering the electrostatic forces.
ass transport by electromigration was neglected as compared

o the convective transport because we assumed high-Peclet-
umber flows in the study. We focused on the cathode-side redox
eactions without considering the fuel reaction because a report
16] mentioned that the cell was cathode limited. We used the
utler–Volmer equation to describe the boundary conditions of

he concentrations of the oxidant and the intermediate product at
he cathode electrode. We solved the mass transport equations
y means of the spectral method where the eigenvalues were
umerically obtained through the Galerkin method.

For the single reaction of Eq. (17), given ratio kOx/kRd and
he inlet-end concentration of the oxidant, the potential η at the
quilibrium state does not change with kRd if n is fixed, but
quilibrium-state η decreases with increasing n if kRd is fixed.
he latter can be checked by substituting these n values into Eq.

72). In addition, in the limiting condition, the average current
ensity is linear with n, while the maximum average electric
ower is almost independent of n. However, the potential η at
hich the maximum average electric power is generated in the

ases of n = 1, 2, and 3 has the ratio nearly equal to 1:1/2:1/3.
In the linked simultaneous reactions of Eqs. (47a) and (47b),

he iav-1 becomes larger in the case of smaller kInt while iav-2
ncreases with k′Int. At given C̄Ox and C̄Int, simultaneously
ncreasing the ratios kOx/kInt and k′Int/kRd is favorable to the
nhancements of the net average current density and the net
verage electric power. However, the iav-1 is about the same for
¯ Int less than 0.05 if kOx/kInt is very large. Nevertheless, the iav-2
an increase remarkably by slightly increasing the C̄Int provided
hat the ratio k′Int/kRd is very large. In summary, given the same
alues of n, kOx, kRd, and the inlet-end concentration of the oxi-
ant, by adding a great deal of the intermediate product into
he oxidant solution, one can obtain more power through the
inked simultaneous reactions of Eqs. (47a) and (47b) than that
btained though the single reaction of Eq. (17) as long as the
atios kOx/kInt and k′Int/kRd are very large.
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