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Abstract

Experiments with a laminar flow-based membrane-less fuel cell (LFMFC) have been conducted by many scientists. Choban et al. reported that
the cell’s performance is cathode limited. Accordingly, we have established half-cell models in our paper to study two types of redox reactions
occurring at the cathode of the LFMFC without considering the fuel reaction. Our two-dimensional models are solved by using the spectral
method where the eigenvalues are obtained by employing the Galerkin method. The similarity transform is applied to separate the concentrations
of the oxidant and the intermediate product from their coupled boundary conditions. As shown in our results, the limiting average current density
increases with the stoichiometry coefficient of electrons in the case of no intermediate product, yet the maximum electric power is independent
of this coefficient. Given the concentrations of the oxidant and the intermediate product at the inlet end of the cell, we have obtained a condition
increasing the current density. However, we also found the principle of generating a great deal of electric power by increasing the concentration of

the intermediate product at the inlet end of the cell.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The possibility of generating electrical energy by continu-
ally feeding electrochemically active materials to a suitable cell
has been investigated since 1839 by using platinum electrodes
immersed in aqueous acid electrolytes. However, important
progress in fuel cell technology dates from the early 1950s due
to the requirements of the US Space program which has stimu-
lated many researchers to seek electrical power thatis clean, safe,
efficient, economically feasible, and capable of quick start-up.

Many researchers have developed various fuel cells [1] for
solving the two conventional problems in fuel cells: (1) slow
electrochemical reaction rates result in low efficiency and (2)
hydrogen has not become a readily available fuel source. On the
basis of the electrolyte employed in the cell, there are five main
types of fuel cells: proton exchange membrane (PEM), alkaline,
phosphoric acid, molten carbonate, and solid oxide fuel cell. In
a proton exchange membrane fuel cell (PEMFC), for preventing
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the mixing of fuels and oxidants, two electrode plates are bound
to either side of the PEM that is used for transferring the protons
from the anode to the cathode. Excellent reviews of the PEMFC
up to mid 1990s were presented by Prater [2] and Gottesfeld
[3]. The computational works on the PEMFC can be referred to
the studies of Bernardi and Verbrugge [4,5], Springer et al. [6,7],
Fuller and Newman [8], Nguyen and White [9], Gurau et al. [10],
Yi and Nguyen [11,12], Um et al. [13], and Kulikovsky [14].
However, the PEM has two disadvantages: (1) it must be
continuously hydrated to provide good transport of protons and
(2) the fuel can diffuse through the PEM to the cathode, caus-
ing the problem of a mixed potential. To avoid these issues,
Ferrigno et al. [15] and Choban et al. [16], respectively, devel-
oped the laminar flow-based membrane-less fuel cell (LFMFC)
in which the fuel and oxidant aqueous solutions are pressure-
driven from separate sources into a common channel. In this
channel, these two streams remain laminar parallel flows with a
liquid-liquid interface. As aresult, the first disadvantage of using
the PEMFC is naturally eliminated for the LFMFC because the
liquid-liquid interface is essentially a non-drying membrane.
Moreover, the problem of mixed potential can be effectively pre-
vented because the LFMFC is normally operated at the Peclet
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Nomenclature

Cint non-dimensional concentration of the intermedi-
ate product

Cox non-dimensional oxidant concentration

Cox and Cry the inlet-end concentrations of the oxidant
and the intermediate product in the case of Egs.

(47a) and (47b)

Ci inlet-end concentration of the oxidant in the case
of Eq. (17)

CBL  concentration boundary layer

lay average current density generated at the cathode

electrode by the reaction of Eq. (17)

iav-1 and izyp average current densities generated at the
cathode electrode by the reactions of Eqgs. (47a)
and (47b), respectively

fav-net and Pye; net average current density and net average
electric power generated at the cathode electrode
through the simultaneous reactions of Egs. (47a)
and (47b)

kint and k’In , thereaction rate constants for the intermediate
product in the anodic process of Eq. (47a) and the
cathodic one of Eq. (47b), respectively.

kox and krq the reaction rate constants for the oxidant
(Ox) and the final product (Rd)

LFMFC laminar flow-based membraneless fuel cells

n the stoichiometry constant for the electron

P average electric power generated at the cathode
electrode by the reaction of Eq. (17), defined as n
time i,y

Pe Peclet number

PEM  proton exchange membrane

PEMFC proton exchange membrane fuel cells

Greek letters

n difference between the non-dimensional electric
potentials of the cathode electrode surface and the
adjacent electrolyte solution

Neq the potential ; at the equilibrium state

number above 10,000 [16] for optimal performance and for
reducing the crossover diffusions of fuel and oxidant. Recently,
the principle of laminar parallel flows has been successfully
applied to other microfluidic systems [17-20]. To date, a surge
of studies has been reported on micro power sources for the
increasing demands of small and often portable devices capa-
ble of operating in longer periods without recharging; e.g., cell
phones, laptop computers.

Ismagilov et al. [21] investigated the crossover diffusion of
electrolytes in parallel flows. They found the scaling laws for
the crossover diffusion: the thickness of the crossover diffusion
zone is scaled as the one-third power of (DZ/U) near the bound-
ary and as the one-half power in the middle of the channel,
where D is the diffusivity, Z the distance along the channel, and
U is the averaged velocity. Put succinctly, the thickness of the
crossover diffusion is determined only by the Peclet number. In

summary, these scaling laws provide a basic understanding of
the crossover diffusion, which is required to predict the reso-
lutions of patterning and the fabrication with laminar flow [22]
and is also necessary for the designs of diffusive T sensors [23]
and other components in micro analytical systems [24].

Anisin et al. studied two-dimensional models for the laminar
single gas layer confined between a rigid plate and an electrode
[25]. The electric current, as shown in their results, increases
with the gas velocity.

Bazylak et al. [26] used a three-dimensional fully numerical
model to calculate the convective mass transport in the LFMFC.
Employing the reaction kinetics, Bazylak et al. derived the
boundary conditions for the fuel and the oxidant. Their results
show that the fuel utilization can be increased from 8% to
23% but only 3% of mixing observed at the outlet is increased
if the inlet-end velocity is decreased from 0.1 to 0.02ms™!.
However, based on the simulation results, their proposed
tapered-electrode design for the LFMFC enables the fuel
utilization to reach more than 50%.

The Butler—Volmer equation [27] has been applied to calcu-
late the current density generated by a single reaction. However,
there are possibilities for two reactions to occur simultaneously
and these reactions are linked by a common reactant. For exam-
ple, the single reaction Oy + 4H™ + 4e~ = 2H,0 occurring at
the cathode electrode can be regarded as the sum of two simul-
taneous reactions [28]:

0, +2H" +2¢~ = H,0, (D
and
H,0, + 2H" +2¢~ = 2H,0 I

As seen, reactions (I) and (IT) are not independent but linked
by the intermediate product, hydrogen peroxide. Experiments
show that the hydrogen peroxide is a relatively stable and
detectable intermediate product because reaction (I) is gener-
ally inherently faster than (II). However, the more hydrogen
peroxide arising, the less electric current generated by reaction
(D, because increasing the chemical potential of the hydrogen
peroxide can activate the anodic process of reaction (I). On
the contrary, because some of the hydrogen peroxide that
accumulates at the cathode electrode will diffuse away, as a
result, the hydrogen peroxide in reaction (II) is reduced and
hence less electric current is generated by this reaction. If such
linked simultaneous reactions occur at the cathode electrode,
the net current density generated at the cathode will be treated
as the sum of those currents generated, respectively, from the
simultaneous reactions [28-30].

In this paper we use theoretical approaches to studying the
single and linked simultaneous reactions occurring at the cath-
ode electrode of the LFMFC. The reason why we focus only
on the cathode-side reactions is based on a report [16] which
mentioned that the entire current density cannot increase signif-
icantly with the fuel concentration but can be limited obviously
by the low oxidant concentration. The experiments [16] showed
that the cell’s performance was cathode limited. Accordingly, in
this paper we are interested in developing two-dimensional half-
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cell models for studying the cases of single reaction and linked
simultaneous reactions occurring at the cathode. We begin with
the governing equations for the steady incompressible parallel
flows. We solve the mass transport equations by means of the
spectral method where the eigenvalues are numerically obtained
by using the Galerkin method [31].

2. Mathematical models
2.1. Continuous and momentum equations

Fig. 1 is a two-dimensional schematic of the LFMFC, where
the oxidant and fuel solutions are pressure-driven into acommon
channel and remain in laminar parallel flows with a liquid-liquid
interface. The catalyst electrodes are installed at two bound-
ary walls y*=—H" and H". The oxidant and fuel solutions are
mainly transported, respectively, in the cathode side (between
y'=—H" and 0) and in the anode side (between y“ =0 and
H"). These two streams are assumed to be fully developed
steady incompressible high-Peclet-number parallel flows. The
crossover diffusion will be considered in the mass transport
equation. We assume constant fluidic properties and neglect the
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analysis
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electrostatic force in the momentum equation by means of the
electroneutrality assumption (see Chapter 11 of Ref. [28]).
Using the characteristic velocity, length, and pressure:

k V*
uf = (H*) ui, ey
(", y") = H*(x, y), 2
k * U* :
Pi = pP; <H*) P, (3)

. . * . . . . . . . .
in which v" is a characteristic kinematic viscosity, we can obtain
the non-dimensional continuity and momentum equations for
the parallel flows in the common channel:

au,‘
A 4
o 4
oP; 3%u;
0=-"T4u 5)
ox ay
P;
== ©)
y
fuel

stream

anode
electrode

B e Ll

liquid-liquid interface

Fig. 1. Two-dimensional schematic of the LFMFC in which the oxidant and fuel streams are pressure-driven into a common channel and then remain in parallel

flows with a liquid-liquid interface.
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where v; is defined as v} /v*. The subscript of i=1 represents
the cathode-side stream that is transported between y=—1 and
0. The anode-side stream is represented by i =2 and transported
between y=0 and 1. The solution to the velocity u; is a parabolic
profile:

ui = —Uily* + Aiy + Bi] @)

_ —3P;/d

U; = # ®)
21)1'

We use four boundary conditions to solve the undetermined
coefficients in Eq. (7) for i = 1 and 2: they are, respectively, con-
tinuous velocity and shear stress at y =0 plus no-slip conditions
at y==1. Moreover, the x-direction pressure gradients in the
cathode- and anode-side streams must be equal according to Eq.
(6) and the dynamic boundary condition. As a result, we obtain:

0P _ ) _s )
ox  ox P
_ Sp
Ui=—— 10
i 2 (10)
M1 —ry)
Al = ——— 11
1 Mr (1D
1—ry
Az = M +r (12)
u
1+ M
B, Z_M (13)
M+ ry
1+M
By = — 14
2 Min (14)
*
M=" (15)
P1
Vi
ruzf*. (16)
%)

2.2. Mass transport models

In this subsection, we introduce the half-cell models and theo-
retical approaches to studying the single and linked simultaneous
reactions occurring at the cathode electrode. As described above,
the fuel reaction is not considered because the cell’s perfor-
mance is cathode limited [16]. The stoichiometry coefficients
of the oxidant, intermediate product, and the final product are
assumed to be one. We assume high-Peclet-number flows for
the reason described in the Introduction. In particular, in the
high-Peclet-number flow, the y-direction gradient of the oxidant
concentration near the cathode electrode becomes steeper, so a
larger amount of the oxidant can diffuse to the electrode.

2.2.1. Part(A)
Ox + 2mH" +2ne” = Rd a7

Eq. (17) is a single redox reaction where the notations Ox and
Rd represent, respectively, the oxidant and the final product. A

proton source, such as sulfuric acid, can be added to the cathode-
side stream to provide a supply of protons for the consumption
of protons at the cathode electrode [16,32,33]. In fact, the con-
centration of the sulfuric acid is very large as compared to that
of the oxidant; the ratio between the concentrations of the sul-
furic acid and the oxygen is 1000 as shown in the paper [16].
Therefore, in such a very acidic solution, the concentration of
protons can be treated as a constant [28]. In this paper the final
product is assumed to be pure liquid or solid, of which the activ-
ity is one. Electromigration is not considered for it could be
small as compared to the convective transport in the high-Peclet-
number flow. Furthermore, due to the crossover diffusion, the
y variable of the oxidant concentration must range from —1
to 1, so the oxidant will be transported by a different velocity
profile as it diffuses across the liquid-liquid interface (see Eq.
(7)). Accordingly, we can write down the non-dimensional mass
transport equation and the boundary conditions for the oxidant as
follows:

aC 92C
Peiy; =9 — £ ZOx (18)
0x dy?
aC, ,
a;)X = koxCox e 2" — kra €™,y =—1 (19)
aC,
O _o y=1 (20)
dy
where
1
i = —>— (" + Aiy + B) @1
2\),'
—v*§ P 22)
e =
Dy

the superscript of star (*) stands for dimensional terms and Cox
is the non-dimensional oxidant concentration based on the char-
acteristic concentration (one molarity). The notation Pe is the
so-called Peclet number. We quantitatively describe the reaction
of Eq. (17) by using the form of the Butler—Volmer equation as
shown in Eq. (19) where kox and krq are, respectively, the non-
dimensional reaction rate constants for the oxidant and the final
product. Although the inequality of B+ 8’ # 1, strictly speaking,
holds for the processes involving more than one electron [34],
we will assume that both 8 and 8 are equal to 0.5 in this paper.
In Eq. (19) 7 is a non-dimensional term defined by

Fn*

RT (23)

n=

where F is the Faraday number and " is the difference between
the physical electric potentials of the cathode electrode surface
and the adjacent electrolyte solution. D, is the dimensional dif-
fusivity for the oxidant. Note that the activity of the final product,
Rd, is one. To solve for Coyx, we transform Eqgs. (18)—(20) as fol-
lows:

~ 8COX 82 COX
Peii; = —
ox 932

(24)
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aC _
O _ eCox, §= -2 (25)
ay
aC
% _0, y=0 (26)
ay
where
& = koge 2P (27)
Cox = Cox — K12 (28)
k
K-l = R (29)
kOx
y=y—1 (30)
Let
N o
Cou= Y oerw {~2er}w G1)

Substituting Eq. (31) into Egs. (24)—-(26), we obtain

d2
szk + opitig = 0 (32)
d

Y _ op. aty= -2 (33)
dy
d

1{’( =0, aty= (34)
dy

We express 1y by

N
Yk =Y _ankdn(¥) (35)

n=1

To match the boundary conditions Egs. (33) and (34), we may
select

én(5) = cos (ﬂ"y> . (36)

2

So B, must satisfy
Putan By = 2¢ 37

The eigenvalues B, can be solved numerically. By substi-
tuting Eq. (35) into Eq. (32), an eigenvalue equation based on
the Galerkin method is obtained as follows, from which we can
solve for a, x and o:

[H]™'[Rlax = oxdx (38)

where

ax = lar g, azgs - - anil” (39)
0

[H]; ;= /thidh'd)j dy (40)
LN\ 2
Bn .

(Rlij= (5] 8. ij=1....N. (41)

Carrying out the computation of Eq. (38), we obtain one set of
{a1 4> a2, - .., any} for each oy to compose the corresponding
Y according to Eq. (35).

Let Cox at the inlet end of the common channel (x=0) be
given by

0 for —1<y93<0
Cox = - (42)
C; for —2<y<l1

where Cj is the inlet-end concentration of the oxidant, so the
inlet-end condition for Cox can be found from Eq. (28):

& —K e forr —1<9<0 3)
ox = C1—K_162’“7 for —2<3y<1

By means of the orthogonality, the coefficients o in Eq. (31)
can be solved by

%, Conx = 0ty dy
2 a2 dy

After that, Coyx can be obtained from Eq. (31), and hence
Cox 1is solved. Now, the local current density generated at the
cathode electrode can be calculated by substituting the Cpx into
Eq. (19). Let the current density be rendered non-dimensional by
using the characteristic current density (FDg, 1 molarity)/ H*.
We define an average current density as

g (44)

1 L
_— /O 2n(koxCox e 2P — kpaP)serdx  (45)

where L is the non-dimensional length of the cathode electrode.
According to Eq. (19), we have

2n /L 3Cox
lav=— [ ——ly=—2dx. (46)
YLy ooy Y
2.2.2. Part (B)
Ox + mH" + ne™ = Int, (47a)
Int + mHY +ne” = Rd (47b)

Now, we consider two simultaneous reactions linked by an
intermediate product (Int) as shown in Egs. (47a) and (47b),
and their sum is exactly the single reaction of Eq. (17), for
instance, the case of Oy + 4HT 4+ 4e~ = 2H,0. In this paper
we assume the ratio between the diffusivities of the oxidant and
the intermediate product is roughly equal to one, because the dif-
fusivity for most electrolytes in dilute solutions is in the order of
1072 m? s~! [35]. In the following, we present the mass transport
equations and the boundary conditions for the concentrations of
the oxidant and the intermediate product (Cox and Cip) on a
basis of the same characteristic scales and assumptions as those
used in part (A):

a|C 3> | C
Peit;— | = ooy o (48)
x | Crne 0y | Cint
aC /
B;X = koxCox e—ﬁanﬂ — kintCrnt eﬁa"ﬂ’ y=-2 (49a)
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aC "
- a;‘“ = koxCox € P — ki Cry e — ki Crog e Po
+kra ey =2 (49b)
a | C
R e ) (50)
8y Clnt

where Pe and #i; are defined in Egs. (21) and (22).We can com-
bine Egs. (49a) and (49b) into:

5 [Con] [hove B ket ] [con
95 | Crnt —kox e Bann klmeﬂ‘/"m‘Fk{me_ﬁbnn Cnt
0 51

1 e (51)

Note that each electron transfer coefficient in Eq. (51), just as
like as B and B’ in Eq. (19), is assumed to be 0.5. The notations
kine and ky,, represent the reaction rate constants of the inter-
mediate product in the anodic process of Eq. (47a) and in the
cathodic process of Eq. (47b), respectively. However, we can
rewrite Eq. (51) as follows:

d | Cox |1 —ik1e™ Cox
il -z
3y | Crnt -1 ke +k| | Cmne
+ 0 (52)
—kgq P
where
& = kox e P (53)
kInt
K= — (54)
kOx
King
k=2 (55)
kOx
B=0.5 (56)
Define the matrix in Eq. (52) as [A]:
Al Anp 1 —ip e™
[A] = = e (57)
Arl A, -1 ke +io
Using the similarity transform, we have
[A] = [P][A]LP]™! (58)
and
=0 (59)
“lo0 Ao

where A1 and A, are the distinct eigenvalues of [A]. The first and
second columns in the [P] matrix are, respectively, the eigen-

vectors corresponding to A and X,; that is,

A APl P (60)
| Azt An | | Pum Pr.m
If we define
-Sl | Cox

_ip 61
_S2 [] [Clnt] ( )
-fl —pi—1 0
)= l—kkdeﬁ"”l -
and
0] (s [A/ea)

_ n 63
_tZ] [Sz] [fz/(g)ﬂ)] )

then we can rewrite Eqgs. (48), (50) and (52), respectively, as
follows:

_ 0 |t 92 51

Peii;— =7 (64)
ox | 1 992 | 1

d 5]
— =0, y5y=0 65
5 [Q] y (65)
a |t gLt g1t
2 1]:[~11]E[~11]’ o ©6)
ay | i Aoty 15}

As seen, both #1 and #, are not coupled as Cox and Cry in Eq.
(52). The conditions of 71 and 7, at the inlet end of the common
channel (x=0) can be found through Egs. (61)—(63) where the
inlet-end conditions of Cpx and Cpy¢ are given as follows:

Coxl 0 for —1<y3<0 67)
Oxla=0 = Cox for —2<y<1

Cun 0 for —1<9<0 68)
M=0=3 e for —2<j<1

Therefore, we can separately solve Eqgs. (64)—(66) for ¢; and
t by means of the same method for solving Egs. (24)—(26),
and hence Cox and Ciy can be obtained through the reverse
transform from Eq. (61)—(63). Now, we can calculate the net
average current density which is the sum of two average current
densities generated, respectively, by the simultaneous reactions
of Egs. (47a) and (47b). They are expressed as

1 L
ot = 7 / n(koxCox &P — ki Cin 5=z dx  (69)
0

. 1k _
a2 = 7 / 1 (ki Crot € P — kra )|5- 2 dx (70)
0

where i,y-1 and i,y are non-dimensional quantities based on the
same characteristic current density used in part (A). Thus the net
average current density is defined by

lay-net = lay-1 + fay-2- (71)
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3. Results and discussion

In this section we present the modeling results of both current
density and electric power as a function of potential n for the
reactions in parts (A) and (B). As defined in Eq. (23), n is the
difference between the non-dimensional electric potentials of the
cathode electrode surface and the adjacent electrolyte solution.
For saving on computation, the potential n is restricted to the
range from O to less than 30. Consequently, the conversion by
using Eq. (23) shows that the range of the physical potential "
is within 0-0.775 V for room temperature (R7T/F =0.02585V).
Unless otherwise specified, the following parameters are fixed:
(1) the number of expansion terms in Eq. (31) N= 150, similarly
for #1 and 1, expansions, (2) the Peclet number, Pe = 109, B)M
and ry in Egs. (15) and (16) are set to be one and (4) all electron
transfer coefficients in Egs. (19), (49a) and (49b) are specified
as 0.5.

3.1. Results for part (A)

Fig. 2a shows the average current density i,y versus the poten-
tial n for the reaction of Eq. (17) for four cases of krq, in which
we specify three parameters: the ratio kox to krq (K), stoichiom-
etry coefficient n, and the inlet-end concentration of the oxidant
(C1). As mentioned above, we set the range of 1 as from 0 to 20
(n" =0-0.517 V). As a result, considering the clarity of Fig. 2a,
we present only four cases of krq within this potential range.
Those curves for krq larger than 10~8 and less than 10~!° are so
close to the curves of kgg = 1078 and 10~ that they are not dis-

20 O—
?.‘ . T 0 Con
e

i i

16 - __ o (a]

i

b ;b
e ‘

TTA— .

— ‘=

0.6 0.8 1.0 12 1.4

0 3 6 9 12 15 18 21
(b) P

Fig. 2. Average current density i,y and average electric power P vs. the potential
n where K= e x 10%, n=1, and C = 1073, The symbol of rectangular box
stands for the case of krq = 10_8; black circle: krq = 10‘12; triangle: krq = 10_16;
star: krg =10719.

played in the figure; accordingly, we choose 1078 and 107 as
the range of krq in Fig. 2a for pure graphic consideration. In the
equilibrium, the current densities generated by the cathodic and
the anodic processes of Eq. (17) are equal such that the deriva-
tive of Cpx respective to y at the cathode electrode is equal to
0 according to Eq. (19), whereby we can infer Coxjy=—1=Cj.
Accordingly, we can obtain from Eq. (19) the potential n at the
equilibrium state:

_ In(koxCi/kra)  In(C1K)
Meq = 2n -T2~
whichis independent of krq as shown in Fig. 2a. Furthermore, we

combine Eqgs. (30), (45) and (72) to rewrite the average current
density as

20 (72)

1 L
fay = — / 2nkgq e*"Prea
L Jo

% <C0><éy=1 e~ 2bn(1—1eq) _ ezﬂn(n—neq>> dx (73)
1

Apparently, the potential n must be decreased much further
from the equilibrium-state value in order to generate appreciable
current density in the case of smaller krq, because we know that
the smaller the krg and kox, the less the exchange current density.
For instance, to generate the average current density of 0.4, the
reduction of 7 is found to be 1% and 97% of neq for the cases of
kra=10"% and 1071°, respectively. Now, we define an average
electric power by P =ni,y,. Fig. 2b shows that the maximum P
decreases as kgrq is diminished.

In contrast to Fig. 2 where krq is varied yet n is fixed, Fig. 3a
shows the effects of n on the cell’s performance, where kgrq is
fixed, while C and K remain the same as in Fig. 2. As seen,
the equilibrium-state value of the potential n decreases with
increasing n: neq =20, 10, and 6.67 for n=1, 2, and 3, respec-
tively. However, this property can be checked by substituting
these n values into Eq. (72). On the contrary, the limiting aver-
age current density increases with n. In fact, as the potential n
is lowered to a certain extent, the cathodic process of Eq. (17)
overwhelms the anodic one such that the oxidant at the cath-
ode electrode surface (y = —1) is nearly depleted. Consequently
the y-direction gradient of the oxidant concentration at y=—1
reaches the limit, which can be estimated as follows:

Bg;)x |y=—1 ~ COx,bulkregizr:_COX,y=—l ~ COx,budli(region _ % (74)
where d, is the so-called thickness of the concentration boundary
layer (CBL) of the oxidant. This thickness is proportional to the
reverse of the square root of the Peclet number according to Eq.
(18), yet independent of n. In the situation of Eq. (74), the y-
direction diffusion of the oxidant reaches the maximum so the
average current density will reach its limit as well. We combine
Egs. (30), (46) and (74) to express this limiting average current
density as

2n L aC,

. Ox

— | d >~ 75
lav = [ /O 5 |y=71 X = [ /’c ( )
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Fig. 3. Average current density i,, and average electric power P vs. the potential
1 where K=¢*0 x 103, kgg =102, and C; =1073. The symbol of black circle
stands for the case of n = 1; rectangular box: n=2; black triangle: n=3.

One can see that this limiting value is theoretically linear
with n because d. is independent of n. As shown in Fig. 3a,
the limiting i,, is found to be 1.18, 2.37, and 3.55 for n=1, 2,
and 3, respectively. Obviously their ratio is nearly 1:2:3, which
coincides with Eq. (75). Next, we display in Fig. 3b the results
of the average electric power P calculated for those three cases
of n in Fig. 3a. However, the maximum P is about the same,
nearly independent of n. Moreover, the potential  at which the
maximum P is generated is found to be 13.4, 6.8, and 4.5 for

n=1, 2, and 3, respectively. The ratio among these potentials is
about 1:1/2:1/3.

3.2. Results for part (B)

When studying the simultaneous reactions of Eqs. (47a) and
(47b), we are especially interested in the effects of the interme-
diate product on the cell’s performance. Consequently, in this
subsection our discussion is focused on the theoretical under-
standing of the principles: how the current density is changed
with the reaction rate constants of the intermediate product (kg
and ky,,,) and changed with the concentration of the intermediate
product. In order to qualitatively describe the effects of kyy and
ki in Figs. 4 and 5, we investigate three sets of kyy and &y, in
which we specify the kox and kgrq, and the inlet-end concentra-
tions of the oxidant and the intermediate product (Cox and Cryp).
Next, in Figs. 6 and 7, we choose three cases of Cint to study
the effects of the concentration of the intermediate product on
the cell’s performance. It should be noticed that the ranges of
kint and k{m (both are from 1078 to 108) are specified for pure
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Fig. 5. Net average current density i,y-ner and net average electric power Ppet VS.
the potential 7 for n=1, kox = 102, kg =107, Cox = 0.1, and Cpp = 0. The
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Fig. 7. Net average current density iay-ner and net average electric power Ppet Vs.
the potential n where n=1, kox = 102, kra=1072, k=108, k{m =108, and
Cox = 0.1. The symbol of rectangular box stands for the case of Cox = 0; star:
Crne = 0.01; black circle: Cpy = 0.05. The symbol of black triangle represents

the i,y and P calculated for the single reaction of Eq. (17).

computational consideration, not for any particular intermediate
species, because the main purpose in this subsection is to qual-
itatively describe the effect of the intermediate product on the
cell’s performance.

First, we display in Fig. 4a the results of calculated iy,.1 by
using Eq. (69) for ke = 10~8 and 10%, whereas k{m is fixed at 108.
It indicates that i,y.; becomes larger in the case of smaller kyp.
In contrast to Fig. 4a, Fig. 4b shows the iyy- calculated by using
Eq. (70) for k{,, = 1078 and 108, where kyy is fixed at 1078.
As seen, the i,y.o increases obviously with k{m. Yet, it must be
noticed that i,y-5 is almost 0 or negative in the case of k{m =108
because this ky,, is a great deal smaller than the specified value
of krq and also because the Cyy is O such that the reaction of
Eq. (47b) is dominated by the anodic process especially when
the potential 7 is enhanced. Accordingly, we infer, it is favorable
to increasing the net average current density i,y-ner When both
kox/kmt and k{nt /krq are very large. To prove this, we present
the calculated i,y.ne; Versus the potential n in Fig. 5a for those
cases in Fig. 4. As shown, the results agree with our inference.
On the contrary, the case of larger kg coupled with smaller &y,
will be more adverse to the generation of current density, which
is not our interest and not presented in Fig. 5. In addition, we
display in Fig. 5b the net average electric power Ppe; defined
by iav-net’). In summary, at given Cox and Cpp, simultaneously
increasing the ratios kox/km and k{m / krq will be favorable to the
enhancements of the net average current density and the electric
power.

To more understand the effect of the intermediate product on
the cell’s performance, in addition to researching the effects of
kin and ki, we also want to study the effect of the concentration
of the intermediate product. To carry out this work, we select the
optimal case in Fig. 5 where kpy = 108 and k{m = 10® because,
as described in the last paragraph, this case is favorable to the
generations of current density and electric power. Furthermore,
we set Cre = 0, 0.01, and 0.05, respectively. First, as shown in
Fig. 6a, the calculated i,y.1 by using Eq. (69) is about the same
among these three cases of Cpy because the given ratio kox/kng
is so large that the second term in the integration of Eq. (69),
as compared to the first term, is almost neglected for Cint less
than 0.05. Moreover, as displayed in Fig. 6b, the i,y increases
remarkably because the specified value of ky,,/kgrq is so large
that slightly increasing the Ciye can obviously enlarge the first
term in the integration of Eq. (70). Accordingly, we infer, only
when the ratios kox/kin and k{nt /krq are simultaneously very
large will the net average current density obviously increase as
Crne is increased. To prove this, as defined in Fig. 5, the net
average current density and the net average electric power for
those cases in Fig. 6 are calculated and exhibited in Fig. 7a and
b, respectively. As seen, both iyy-ner and Ppe; obviously increase
with Crp. In particular, the maximum Ppe; changes from 156 to
653 as Crp is slightly increased from 0 to 0.05. Checking Fig. 6,
one can see that the evident increases in iyy_pet and Ppet are due
to the changes in i,y-5. Finally, we present in Fig. 7a and b the i,y
and P (black-triangle symbol) calculated for the single reaction
of Eq. (17) to compare with the iay_ner and Ppe; at the same values
of n, kox, krd, and the inlet-end concentration of the oxidant. As
shown from the result of comparison, adding more intermediate
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product into the linked simultaneous reactions of Egs. (47a) and
(47b) can help us obtain higher power than that obtained though
the single reaction of Eq. (17) as long as the ratios kox/kin and
kin./ kra are very large.

4. Conclusions

Two-dimensional half-cell models were established for
studying the current densities and electric power generated
through the reactions of Egs. (17), (47a) and (47b) that occur at
the cathode of the LFMFC. The parabolic solutions to the fully
developed steady incompressible high-Peclet-number parallel
flows were obtained without considering the electrostatic forces.
Mass transport by electromigration was neglected as compared
to the convective transport because we assumed high-Peclet-
number flows in the study. We focused on the cathode-side redox
reactions without considering the fuel reaction because a report
[16] mentioned that the cell was cathode limited. We used the
Butler—Volmer equation to describe the boundary conditions of
the concentrations of the oxidant and the intermediate product at
the cathode electrode. We solved the mass transport equations
by means of the spectral method where the eigenvalues were
numerically obtained through the Galerkin method.

For the single reaction of Eq. (17), given ratio kox/krg and
the inlet-end concentration of the oxidant, the potential n at the
equilibrium state does not change with krq if n is fixed, but
equilibrium-state 1 decreases with increasing n if kgrq is fixed.
The latter can be checked by substituting these n values into Eq.
(72). In addition, in the limiting condition, the average current
density is linear with n, while the maximum average electric
power is almost independent of n. However, the potential 1 at
which the maximum average electric power is generated in the
cases of n=1, 2, and 3 has the ratio nearly equal to 1:1/2:1/3.

In the linked simultaneous reactions of Eqs. (47a) and (47b),
the i,y.1 becomes larger in the case of smaller kpy¢ while iay-2
increases with k. At given Cox and Cry, simultaneously
increasing the ratios kox/kmy and k{m /krq is favorable to the
enhancements of the net average current density and the net
average electric power. However, the i,y.1 is about the same for
Cint less than 0.05 if kox/kpy is very large. Nevertheless, the iay.o
can increase remarkably by slightly increasing the Cyy provided
that the ratio kj,,/ krq is very large. In summary, given the same
values of n, kox, krd, and the inlet-end concentration of the oxi-
dant, by adding a great deal of the intermediate product into
the oxidant solution, one can obtain more power through the
linked simultaneous reactions of Egs. (47a) and (47b) than that
obtained though the single reaction of Eq. (17) as long as the
ratios kox/kmt and k{m / krgq are very large.
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